Wireless communications is one of the most active areas of technology development of our time. This development is being driven primarily by the transformation of what has been largely a medium for supporting voice telephony into a medium for supporting other services, such as the transmission of video, images, text, and data. Thus, similar to the developments in wireline capacity in the 1990s, the demand for new wireless capacity is growing at a very rapid pace. Although there are, of course, still a great many technical problems to be solved in wireline communications, demands for additional wireline capacity can be fulfilled largely with the addition of new private infrastructure, such as additional optical fiber, routers, switches, and so on. On the other hand, the traditional resources that have been used to add capacity to wireless systems are radio bandwidth and transmitter power. Unfortunately, these two resources are among the most severely limited in the deployment of modern wireless networks: radio bandwidth because of the very tight situation with regard to useful radio spectrum, and transmitter power because mobile and other portable services require the use of battery power, which is limited. These two resources are simply not growing or improving at rates that can support anticipated demands for wireless capacity. On the other hand, one resource that is growing at a very rapid rate is that of processing power. Moore’s Law, which asserts a doubling of processor capabilities every 18 months, has been quite accurate over the past 20 years, and its accuracy promises to continue for years to come. Given these circumstances, there has been considerable research effort in recent years aimed at developing new wireless capacity through the deployment of greater intelligence in wireless networks.  A key aspect of this movement has been the development of novel signal transmission techniques and advanced receiver signal processing methods that allow for significant increases in wireless capacity without attendant increases in bandwidth or power requirements. We provide present the most recent of these receiver signal processing methods in a single place and in a unified framework.